Free Vibration Characteristics of Bidirectional Graded Porous Plates with Elastic Foundations Using 2D-DQM
نویسندگان
چکیده
This manuscript develops for the first time a mathematical formulation of dynamical behavior bi-directional functionally graded porous plates (BDFGPP) resting on Winkler–Pasternak foundation using unified higher-order plate theories (UHOPT). The kinematic displacement fields are exploited to fulfill null shear strain/stress at bottom and top surfaces without needing factor correction. gradation materials is proposed in axial (x-axis) transverse (z-axis) directions according power-law distribution function. cosine function employed define porosity through z-direction. Equations motion terms displacements associated boundary conditions derived detail Hamilton’s principle. two-dimensional differential integral quadrature method (2D-DIQM) transform partial equations into system algebraic equations. Parametric analysis performed illustrate effect relations, indices, type, elastic foundations, geometrical dimensions, (BCs) natural frequencies mode shapes BDFGPP. coefficient frequency dependent type. coupling conditions, functions. model can be used designing BDFGPP nuclear, marine, aerospace, civil structures based their topology constraints.
منابع مشابه
Free Vibration Analysis of Bidirectional Functionally Graded Conical/Cylindrical Shells and Annular Plates on Nonlinear Elastic Foundations, Based on a Unified Differential Transform Analytical Formulation
In the present research, a unified formulation for free vibration analysis of the bidirectional functionally graded conical and cylindrical shells and annular plates on elastic foundations is developed. To cover more individual cases and optimally tailored material properties, the material properties are assumed to vary in both the meridian/radial and transverse directions. The shell/plate is a...
متن کاملFree Vibration Analyses of Functionally Graded CNT Reinforced Nanocomposite Sandwich Plates Resting on Elastic Foundation
In this paper, a refined plate theory is applied to investigate the free vibration analysis of functionally graded nanocomposite sandwich plates reinforced by randomly oriented straight carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses only four independent unknowns and accounts for a quadratic variation of the transverse shear strains across the thickness, and satis...
متن کاملVibration and Static Analysis of Functionally Graded Porous Plates
This research deals with free vibration and static bending of a simply supported functionally graded (FG) plate with the porosity effect. Material properties of the plate which are related to its change are position-dependent. Governing equations of the FG plate are obtained by using the Hamilton’s principle within first-order shear deformation plate theory. In solving the problem, the Navier s...
متن کاملA Semi-Analytical Solution for Free Vibration and Modal Stress Analyses of Circular Plates Resting on Two-Parameter Elastic Foundations
In the present research, free vibration and modal stress analyses of thin circular plates with arbitrary edge conditions, resting on two-parameter elastic foundations are investigated. Both Pasternak and Winkler parameters are adopted to model the elastic foundation. The differential transform method (DTM) is used to solve the eigenvalue equation yielding the natural frequencies and mode shape...
متن کاملFree Vibration Analysis of Moderately Thick Functionally Graded Plates with Multiple Circular and Square Cutouts Using Finite Element Method
A simple formulation for studying the free vibration of shear-deformable functionally graded plates of different shapes with different cutouts using the finite element method is presented. The aim is to fill the void in the available literature with respect to the free vibration results of functionally graded plates of different shapes with different cutouts. The material properties of the plat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11010046